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1. Introduction

Mixed Poisson processes play an important role in many branches of applied

probability, for instance in insurance mathematics and physics (see Albrecht

(1985) and Pfeifer (1986) for recent surveys). They belong to the class of

elementary pure birth processes {N(t);t > 0 } with standard transition

probabilities

pnm(S,t) = P(N(t) = m I N(s) = n), 0 < n < m, 0 < s< t, ()

possessing right-continuous paths and positive and finite birth rates

Sn(t) = lir nn+l(t,t+h), n,t> 0, (2)

and all finite-dimensional marginals of the jump-time sequence {Tn; n > 0 }

are absolutely continuous with respect to Lebesgue measure (see Pfeifer (1982)).

For such processes, the jump times form a Markov chain with transition

probabilities

1 - Fn(t)

P(T > t I Tn_I 
= s) , 0 <s < t, n > 1 (3)

1 -F(S) -

and initial distribution function F0 where

0

1 -F (x) = exp nj .f (u) du },x > 0, n > 0 (4)

(the Fn are in fact all cumulative distribution functions), hence all F
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are absolutely continuous with densities fn (say), and the conditional

densities for the transition probabilities can be represented as

f (snIt) n
fn ( t)- , 0< t< s, n> 1. (5)n- Fn(t)

Moreover, the birth rates coincide with the hazard rates

n(t) - f n(t) a.e., n,t >0. (6)
1 - F n(t)

If especially {N(t); t> 0} is a mixed Poisson process, then also

-xn )/ Jxnext

Xn(t) = n+lext dG(x) x e dG(x) , n,t >0, (7)

0 0

where G is the cdf of the mixing random variable A (say). In fact, Lundberg

(1940) has proved that such a representation characterizes the intensities

of a mixed Poisson process.

&i In terms of random variables, a mixed Poisson process behaves like a homogeneous

Poisson process with rate X given A = X , from which it also follows that

A (t) = E( Al N(t) = n), n,t > 0. (8)n

The following result completes some of Lundberg's (1940) results on the

asymptotic behaviour of the intensities for mixed Poisson processes.

-2-
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Lemma. Let {t n > 1 } be a sequence of positive real numbers converging
t -1/3

tt 0such that 1- - i = o(n- ), n . Then, if 1/t is a point
tot t

of increase of G, we have

lir X (nt) . (9)

n -o

Proof. Let e > 0 be chosen in such a way that n C 3 - 0, n S 2 O andn nl n
t

(-- - 1)/ 0 for n From relation (7) it follows that
t n

00 C

X (ntn) e( xt )n+le-xtn dG(x) nt)ne-nXtn dG(X)

1 n n n 1n ndG (lx 2
tn (s )/t xtnexp(- 1xtn ) dG(x exp(- 2 n-xt dG(x)

n)/t n (l- )/tn
1

~- for n - c' . This proves the Lemma.
n

The above result is in general not true without further conditions on G as can

e.g. be seen by mixing distributions concentrated in a single point X > 0;

here An(t) = X for all n and t, X being the only point of increase of G.
n

As an example, consider a Polya-Lundberg process where A follows a gamma
2

distribution with mean j >0 and variance aU , c% > 0. Here

S+ n
n (t) = j , n,t > 0, (10)

* 11l+lct

from which the validity of (9) can be seen explicitly, for all t > 0.

-3-



2. The martingale characterization

Let { n (T n_); n > 1) denote the sequence of post-jump intensities.

In the light of (2), the post-jump intensities describe the transition behaviour

of the process immediately after a jump has occured. The following result

gives a characterization of mixed Poisson processes by a martingale property

of this sequence.

Theorem I. Let { N(t); t > 0 } be an elementary pure birth process with intensities

{n(t); n,t >0} and jump times {Tn; n> 0} . Let for n> 1 denote An the

a-field generated by T0,...,T Then {N(t); t> 0 } is a mixed Poisson process
n-1

iff the post-jump intensities {X n(Tnl); n > 11 form a martingale with respect

to An; n > 11

-J Proof. Due to the Markov structure of jump times the martingale property of

the post-jump intensities is equivalent to

E(A n+i(T n ) I T n_ = t) = A n(t) a.s. for all n >1 (Ii)

which by (5) and (6) is in turn equivalent to

Sn+l(s) fn(s) fn(t)
).N n ds a.e. (12)

-Fn(s) l-F(t) 1-F (t)

saying that the density f is differentiable a.e. with
n

.... ) f tn+l
( t)

fn(t ) = nfn ( t) a.e. (13)

1-F (t) nv1-Fn+l

or equivalently

9 - .----'.-



f W ,Jt

dn+. n d'~tdt -og(l-Fn t) - dt log f (t) a.e. (14)
lJl\*UJ 1-F n+l(t) fn ( t) 

Integration of this last relation shows that there are constants cn> 0 such

that

1-F n+l( t) = cn  n(t), t > 0, (15)

which in turn implies that f is absolutely continuous and the recursiven

formula

fn+l(t)- c f'(t) (16)

holds everywhere on [O,-) . By induction, we see that all derivatives of

f'n exist on [ O, 0) , and that for all n > 1,

n-1
fn(t) = (- 1 ck f n)(t), t >0. (17)

k=O

Since by assumption, the intensities (and hence all fn) are positive and

n

finite, we have

(_i) n f(n)(t) > 0, n,t > 0. (18)

The density f0 thus is completely monotonic on [0,-) hence by Bernstein's

(1928) theorem there is a bounded and non-decreasing right-continuous function

H such that

f(t) Je- xt dH(x), t > 0. (19)

0

< v ; :N .., .; . . . . ,. ,. . . . . ... . ........ .. , .:........ .



In fact, since f0 is a density, we have that 1 dH(x) - dG(x) is a probability

measure from which it follows that

n-1 n+l-xt
,:fn(t) E c ck  e dGx

k=O0 (20)
0o

1-F n(t) n H 1c k  fxne~x dG(x), n,t > 0.

k=O 0

Hence relation (7) is satisfied, saying that { N(t); t > 0} must be a mixed

Poisson process with mixing distribution dG(x).

Conversely, since every mixed Poisson process has intensities of the form

2(7), it is easily seen that relation (12) holds, hence the post-jump

intensities possess the martingale property, which proves the theorem.

It should be pointed out that since f0(0) < by our assumptions, the mixing

random variable must be integrable with

E( A ) fo(0). (21)

A simple application of the Martingale Convergence Theorem (see e.g. Billingsley

(1979)) then shows that the post-jump intensities converge a.s. to some

integrable random variable since also

! fl~f(t) f0t W t

E( XI(T)) 1 0 dt fo(t) dt =fo(O). (22)
1 0 F 1-F 0 f0(t)

0-- 1 0 0o

The question now is what the possible limits of the post-jump intensities are.

The following result gives an answer to this.

-6-
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A Theorem 2. If A is the mixing random variable of the process, then the

post-jump intensities converge a.s. to A

IProof'. For any mixed Poisson process, we have (n+l)/T n -~ A a.s. by the

strong law of large numbers, applied to the Poisson process with rate A,

conditionally on A=X , and by the law of the iterated logarithm,

n _~ l 11 *. loglog n) =o(n 1/) a.s. for n -*~.Since also A
n~l n

is a.s. concentrated on the points of increase of G, the cdf of A ,we have

by the above Lemma

X (T) X ((n-'l)(T /n'l))) (n-'l)/T A a.s., (23)111n n+1 nn

which proves the theorem.

For instance, if A is coxicen ;rated on two point-~ < V 2 with massca and

1-(X each (ct > 0), then

V 2  t <l(V 1 V 2)
X (nt) av 1+(ictX)\2 ) t = l(V 1 ,V 2 ) (24)

where l('v1,V2 ) =(logy 2 -log Vl 1/(V 2 -Vl), as can be seen from Lundberg

(1940), relation (108). Since always l/V2 < l(V1 ,V9)< 1/l it can explicitly

be seen that

1with probability-

X n~l(T n(25)
V 2 with probability 1-at
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i.e. X nil(Tn) A a.s.
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